Gallium Hydrogen Selenite Diselenite Hydrate, Ga(HSeO₃)(Se₂O₅)-1.07H₂O: A Novel Structure Type **Containing Alternating Cationic and Anionic Layers**

Russell E. Morris and Anthony K. Cheetham*

Materials Department, University of California, Santa Barbara, California 93106 Received July 26, 1993. Revised Manuscript Received October 4, 1993[®]

 $Ga(HSeO_3)(Se_2O_5)$.1.07H₂O $(P2_1/a, a = 9.0648(8)$ Å, $b = 6.5118(4)$ Å, $c = 14.323(1)$ Å, $\beta =$ 105.91(3)^o, $Z = 4$, $V = 813.1$ Å³) was prepared hydrothermally in a steel autoclave at 200 ^oC. The structure was solved using room-temperature single-crystal X-ray diffraction data from 2398 observed reflections $(I > 3\sigma(I))$, $R = 3.68\%$, $R_w = 5.34\%$. Ga(HSeO₃)(Se₂O₅)·1.07H₂O has a double-layered type structure, with positively charged layers containing the $HSeq_3$ units alternating with negatively charged ones containing the $Se₂O₅$ groups.

Introduction

The selenite anion has been shown to be a versatile ligand in selenium(1V) oxo compounds: for example, depending on the synthesis conditions, crystalline solids containing selenite, SeO_3^2 -, hydrogen selenite, SeO_3H -, and diselenite, $Se₂O₅²⁻$, anions can be prepared. Selenite-containing materials are most easily prepared in approximately neutral reaction conditions; thus, $Al_2(SeO_3)_3·3H_2O¹$ and $\text{Al}_2(\text{SeO}_3)_3$ -6H₂O² are both made hydrothermally at pH 7, but at temperatures of 200 and 70 \degree C, respectively. Hydrogen selenites are synthesised using slightly more acidic conditions; e.g., AlHSe₂O₆.2H₂O² and InHSe₂O₆³ are both produced at \sim pH 3 using excess selenious acid in the reaction mixtures. The use of even higher concentrations of H_2 Se O_3 in the starting mixture can produce diselenite containing compounds, and there are a number of examples of this type among selenites of divalent transition metals, e.g., $ZnSe_2O_5$,⁴ MnSe₂O₅,⁵ and CuSe₂O₅.⁶ Previous studies of the group IIIB metal selenites, however, have failed to produce a material where the selenium(1V) atom is part of a diselenite ligand. This paper describes the synthesis and characterization of $Ga(HSeO₃)(Se₂O₅)$. $1.07H₂O$, in which both hydrogen selenite and diselenite ions are present in an alternating anionic/cationic layer structure. The only other example of a mixed hydrogen selenite/diselenite compound is $PrH_3(SeO_3)_2(Se_2O_5).$ ⁷ Other selenites of the group IIIB metals that have been characterized by single-crystal diffraction methods include $Ga_2(SeO_3)_3.3H_2O,^8$ which is isostructural with the corresponding aluminum compound,¹ and $CsGa₂H(SeO₃)₄·2H₂O⁹$ and $\text{Cs}_3\text{In}_2\text{H}_6(\text{SeO}_3)_{12}$ ¹⁰ A number of other materials have been tentatively characterized by means of their infrared $spectra.^{11,12}$

Experimental Section

 $Ga(HSeO₃)(Se₂O₅)\cdot 1.07H₂O$ was prepared from a solution of GaCl₃ in water (1 M), to which a large excess of selenious acid (2 **M)** had been added. The reaction mixture (15 mL) was placed in a 25-mL capacity Teflon-lined steel autoclave, heated to **200 OC** for 2 days, and then left to cool. Colorless, platelike crystals were recovered from the bomb by suction filtration and dried in air.

A suitable crystal for structure determination (0.4 **X** 0.3 **X** 0.04 mm) **was** mounted on a Huber four-circle diffractometer and room-temperature X-ray data were collected (graphite-monochromated Mo K_{α} , $\lambda = 0.71069$ Å) as outlined in Table I. The monoclinic cell constants were determined from the positions of 25 centered reflections and optimized by least-squares refinement; the resulting lattice parameters are shown in Table I. Data were collected in the ω -2 θ scanning mode. Three standard reflections were monitored during the course of the experiment and these showed no significant intensity variation. The scan speed was 6° min⁻¹ with a scan range from 1.3° below Ka_1 to 1.6° above K_{α_2} . Ψ -scans for three reflections were used to correct for crystal absorption. The raw data were reduced using a Lehmann-Larsen profile fitting routine and the normal corrections for Lorentz and polarization effects were applied. All the data collection and reduction routines were based on the UCLA package.13

The systematic absences allowed the space group to be unambiguously assigned as $P2₁/a$ (No. 14). The selenium and gallium atom positions were located using the direct methods program SHELXS86,¹⁴ and subsequent difference Fourier syntheses revealed the locations of the oxygen atoms. Thermogravimetric analysis showed that approximately 1 molecule of water was lost per gallium atom during thermal decomposition (observed weight loss **-4** % at approximately 170 "C; calculated weight loss 3.9%). Only one water molecule oxygen could be refined satisfactorily, although the largest peak in a final difference Fourier map, centered at (0,0.5,0.5), could be refined **as** the oxygen (O(10)) of a second water molecule, with a fractional occupation factor of 0.15(1). This leads to the final composition of the compound being postulated **as** approximately Ga(HSeO3)- $(Se₂O₅)-1.07H₂O$. The remaining peaks in the final Fourier synthesis were too close to the selenium atom positions, and could not be refined **as** extra water molecule oxygens. For the final

Abstract published in *Advance ACS Abstracts,* **November 15,1993. (1) Harrison, W.T.A.; Stucky, G. D.; Morris, R. E.; Cheetham, A. K.** *Acta Crystallogr.* **1992, C48, 1365.**

⁽²⁾ Morris, R. E.; Harrison, W. T. A.; Stucky, G. D.; Cheetham, A. K. (3) Harrison, W. T. A.; Stucky, G. D.; Cheetham, A. K. *Eur.* **J.** *Solid J. Solid State Chem.* **1991, 94, 227.**

⁽⁴⁾ Meunier, *G.;* **Bertaud, M.** *Acta Crystallogr.* **1974, B30, 2840.** *State Inorg. Chem.* **1993,30, 347-356.**

⁽⁵⁾ **Koskenlinna, M.; Niinisto, L.; Valkonen,** J. *Acta Chem. Scand.* **1976, A30,836.**

⁽⁶⁾ Meunier, G.; Svensson, C.; Carpy, A. *Acta Crystallogr.* **1976, B32,**
2664.
(5) Kerkenlings M. Vellangen, J. Acta Chan, Sannd 1977, A31, 457. *9fAA*

⁽⁷⁾ Koskenlinna, M.; Valkonen, J. *Acta Chem. Scand.* **1977, A31,457. (8) Rastsvetaeva, R. K.; Andrianov, V.** I.; **Volodina, A. N.** *Dokl. Akad. Nauk SSSR* **1986, 291,352** *[Sou. Phys. Dokl.* **1986, 31,8551.**

⁽⁹⁾ Raatevetaeva, R. K.; Petrova, G. K.; Andrianov, V. I. *Dokl. Akad. Nauk SSSR* **1982,270,882** *[Sou. Phys. Dokl.* **1982,28,4221. (10) Mukhatarova, N. N.; Kalinin, V. R.; Rastsvetaeva, R. K.; Ilyukhin,**

V. V.; Belov, N.V. Dokl. Akad. Nauk SSSR 1986, 254, 359 [Sov. Phys. Dokl. 1986, 25, 674].

(11) Gospodinov, G.; Sukova, L.; Petrov, K. Zh. Neorg. Khim. 1988, 33, 1975.

⁽¹²⁾ Petrov,K.;Tananaev, I.; Volodina, A.; Bol'shakova, N. *Zh. Neorg.* **(13) Strouse,** *C.* **E.** *UCLACCP,* **University of California, Los Anaeles,** *Khim.* **1977,22, 1453.**

^{1988.} (14) Sheldrick, G. SHELXS-86 user guide; Gottingen, Germany, 1986.

Table I. Data Collection and Refinement **Details** for $Ga(HSeO₃)(Se₂O₅)·1.07H₂O$

formula weight	454.8			
Crystal Data				
crystal system	monoclinic			
a/Å	9.0648(8)			
b/Å	6.5118(4)			
$c/\text{\AA}$	14.323(1)			
β /deg	105.91(3)			
V/\AA ³	813.1			
space group	P2 ₁ /a			
$D_{\rm c}/\rm g\ cm^{-1}$	3.72			
F(000)	823			
z	4			
$linear$ abs $coeff/cm^{-1}$	166.9			
Data Collection				
X-radiation	Mo K α			
2θ min, max/deg	1,65			
obsd data	2398			
$[I > n\sigma(I)], n =$	3			
abs corr/min, max	1.00, 2.51			
Refinement				
no. of parameters	128			
$\Delta\rho$ (max)/e Å ⁻³	2.9			
final $R/\%$ ^a	3.68			
final $R_{\rm w}/\%$ a	5.34			

 $a_R = \sum_h (|F_a| - |F_c|)/\sum_h |F_a|$, $R_w = \sqrt{\sum_h w_h (|F_a|^2 - |F_a|^2)/\sum_{h} w_h |F_a|^2}$.

cycle of least-squares refinement against *F*, anisotropic temperature factors were included for the Se, Ga, and O atoms (except O(10)). The final weighting scheme was that of Tukey and Prince, fitted using a truncated Chebyshev polynomial (coefficients **12.294, -2.445.6.762).**

All least-squares, Fourier, and subsidiary calculations were carried out using the Oxford CRYSTALS system,¹⁵ running on a DEC Microvax **3200** computer. Complex neutral atom scattering factors were obtained from ref **16.**

Discussion

The structure of $Ga(HSeO₃)(Se₂O₅) \cdot 1.07H₂O$ (Figure 1) is double layered, consisting of alternating $[Ga_{0.5}(HSeO_3)]$ $H_2O]_n^{n/2+}$ and $[Ga_{0.5}(Se_2O_5)]_n^{n/2-}$ layers stacked along the c direction, with the remaining water molecules in spaces in the $Ga_{0.5}$ (HSeO₃) \cdot H₂O layers. This is the first such alternating cationic/anionic layer selenite material to be discovered and joins a small class of inorganic compounds with this structural feature; these include the chlorite minerals¹⁷ and $[Na_4Mg_2Cl_{12}][Mg_7Al_4(OH)_{22}]$.¹⁸ Neither of these two structure types show any relationship to the structure reported here. The diselenite group, containing Se(1) and Se(2). shows a similar coordination geometry to other diselenite groups that have been reported in the literature,^{19,20} the Se-O bridging bonds being markedly longer than the other Se-O bonds in the ion. The hydrogen selenite groups show the expected coordination of selenium by oxygen; a slightly distorted trigonal pyramid, with the Se-OH bond marginally longer than the other Se-O bonds. The gallium atoms are both coordinated in an almost regular octahedral fashion by oxygen. The atomic coordinates, bond distances, and bond angles are given in Tables **XI-IV,** respectively.

The $Ga_{0.5}(Se₂O₅)$ layer (see Figure 2) consists of $Se₂O₅$ groups which link three gallium-centered octahedra via **0(1),** 0(2), and **O(4)** into a puckered layer parallel to the

Figure 1. Structure of Ga(HSeO₃)(Se₂O₅).1.07H₂O viewed parallel to the **I1001** direction clearly showing the alternating cationic/anionic layered nature of the material. Illustrated are Ca-centered octahedra and the selenite trigonal pyramids; hydrogen atoms are shown as spheres.

Table II. Final Atomic Coordinates and Equivalent **Isotropic** Temperature **Factors** for $Ga(HSeO₂)(Se₂O₂)$.1.07H₂O

atom	x	y	z	$U_{\rm equ}{}^a\!/\mathrm{\AA}{}^2$	
Se(1)	0.15774(8)	0.1600(1)	0.90253(5)	0.0144	
Se(2)	0.88674(8)	0.8343(1)	0.82730(5)	0.0143	
Se(3)	0.76977(8)	0.2017(1)	0.60611(5)	0.0151	
Ga(1)	0.0000	0.5000	0.0000	0.0135	
Ga(2)	0.0000	0.0000	0.5000	0.0148	
O(1)	0.9857(6)	0.7838(8)	0.0480(4)	0.0163	
O(2)	0.7159(6)	0.9556(8)	1.0035(4)	0.0181	
O(3) ^b	0.4674(6)	0.2649(9)	0.4016(4)	0.0212	
O(4)	0.4427(7)	0.9065(8)	0.8635(4)	0.0180	
O(5)	0.0530(6)	0.8123(8)	0.4061(4)	0.0164	
O(6)	0.1830(8)	0.718(1)	0.2712(4)	0.0253	
O(7)	0.8292(7)	0.799(1)	0.7083(4)	0.0214	
O(8)	0.4225(6)	0.436(1)	0.1654(4)	0.0205	
O(9)	0.2151(6)	0.0714(9)	0.5485(4)	0.0195	
$O(10)^b$	0.0000	0.5000	0.5000	$0.011(7)^{f1}$	
H(1)	0.13(2)	0.58(2)	0.27(1)	0.05c	
H(2)	0.37(2)	0.22(2)	0.37(1)	0.05c	
H(3)	0.52(2)	0.26(2)	0.38(1)	0.05c	

 $^a U_{\text{e}au} = (U_1 U_2 U_3)^{1/3}$ where U_i are the root-mean-square deviations along the principal *mea* of the thermal ellipsoids. **b** Oxygen atoms of water molecules. Fractional occupation factor for $O(10)$ is 0.15(1). *aU*_{iso}. c Not refined.

obplane. **Notwooxygensofadiselenitegroupsarebound** to the same gallium atom. *O(8)* is the bridging oxygen of the diselenite group and **O(7)** is a hanging oxygen involved in hydrogen bonding. The $Ga_{0.5}$ (HSeO₃)·H₂O layer (Figure **3)** also consists of isolated GaOs octahedra, linked via the **sharingofhydrogenseleniteverticesintoaflatsheet.** Each HSe03 unit shares two vertices, **O(5)** and **O(9)** with two

⁽¹⁵⁾ Watkin. D.J.: **Carmthen,** J.R.: Beturidge. P. **W.** CRYSTALS **wr** guide, Chemical Crysfallmphy Lsboratory, **Oxford.** U.K., **1990. (16)** *lntermtionol Tobles for X.myCry8follogmphy:* **Kynoch Pres:** Birmingham. **U.K.. 1974;** Vol. IV.

⁽¹⁷¹ Drita. V. **A,; Karavan, Yu.** V. *Acfo* **Clyafollogr. 198%** *B25.623.* **(18) Allman,** R.; Lohse, **H..H.; Hellnsr, E.** *2. K.kfallogr.* **1968.** *126.* .7 *I.*

⁽¹⁹⁾ Valkonen. J.; Ylinen, P. Acfa *Crysfallogr.* **1979,835.2378.**

⁽²⁰⁾ Koskenlinna, **M.;** ValLonen, J. *Acta* Chem. *Scand.* **1977,** *A31. AW* ." . .

 (21) Brown, I. D. *Structure and Bonding in Crystals*; O'Keefe, M., Navrotaky, A,, **Eds.;** Academic **Presa:** New **York. 1980:** VoL **11,** pp **1-30.**

Table III. Selected Bond Distances (Å) for $Ga(HSeO₃)(Se₂O)₅·1.07H₂O$

$Se(1)-O(1a)$	1.683(5)	$Se(1)-O(2b)$	1.687(5)
$Se(1)-O(8c)$	1.794(6)		
$Se(2)-O(4n)$	1.686(5)	$Se(2)-O(7^k)$	1.657(5)
$Se(2)-O(8e)$	1.828(5)		
$Se(3)-O(5a)$	1.666(5)	$Se(3)-O(6^a)$	1.770(6)
$Se(3)-O(9°)$	1.699(6)		
$Ga(1) - O(1)$	1.988(5)	$Ga(1) - O(1h)$	1.988(5)
$Ga(1)-O(2^{c})$	1.966(5)	$Ga(1) - O(2^i)$	1.966(5)
$Ga(1)-O(4^c)$	1.976(5)	$Ga(1) - O(4^i)$	1.976(5)
$Ga(2)-O(3c)$	2.046(5)	$Ga(2) - O(3^d)$	2.046(5)
$Ga(2) - O(5^j)$	1.972(5)	$Ga(2) - O(5f)$	1.972(5)
$Ga(2)-O(9^k)$	1.939(5)	$Ga(2)-O(9^l)$	1.939(5)
$O(6) - H(1^m)$	0.9(1)	$O(3)-H(2^k)$	0.9(1)
$O(3) - H(3^k)$	0.8(1)		

 $a_1 - x$, $1 - y$, $1 - z$, $b_1 - x$, $1 - y$, $2 - z$, $c_1/2 - x$, $y - \frac{1}{2}$, $1 - z$, $d x$ $-3/2$, $-y - 1/2$, z , $e^{3}/2 - x$, $y + 1/2$, $1 - z$, $f - x$, $1 - y$, $1 - z$, $g x - 1$, y , z ,
 $h1 - x$, $1 - y$, $1 - z$, $x - 3/2$, $1/2 - y$, $z - 1$, x , $y - 1$, z , $k x$, y , z , $l - x$, $-y, 1-z, m^{1/2}-x, y + 1/2, 1-z, n^{1/2}-x, 1/2-y, z, o^{1/2}-x, -1/2-z$ y, z.

Table **IV.** Selected **Bond** Anglea **(des) for** $Ga(HSeO₃)(Se₂O₅)·1.07H₂O$

$O(2b)-Se(1)-O(1a)$	101.2(3)	$O(8c)-Se(1)-O(1a)$	99.2(2)
$O(8c) - Se(1) - O(2b)$	99.0(3)		
$O(7k) - Se(2) - O(4n)$	99.8(3)	$O(8^e) - Se(2)-O(4^n)$	96.8(3)
$O(8^e) - Se(2) - O(7^k)$	97.7(3)	$Se(1m) - O(8) - Se(2m)$	124.2(2)
$O(6a)-Se(3)-O(5a)$	98.2(3)	$O(9°) - Se(3)-O(5°)$	99.1(3)
$O(9°) - Se(3)-O(6a)$	100.6(3)		
$O(1h) - Ga(1) - O(1g)$	179.99	$O(2^c) - Ga(1) - O(1^g)$	89.2(2)
$O(2^{i})$ -Ga(1)- $O(1^{h})$	89.2(2)	$O(2^c) - Ga(1) - O(1^h)$	90.8(2)
$O(2^{i})$ -Ga(1)- $O(1^{g})$	90.8(2)	$O(2c)-Ga(1)-O(2i)$	179.99
$O(4^c) - Ga(1) - O(1^h)$	91.8(2)	$O(4c) - Ga(1) - O(1s)$	88.2(2)
$O(4c)-Ga(1)-O(2i)$	91.7(2)	$O(4^c) - Ga(1) - O(2^c)$	88.3(2)
$O(4^{i})$ -Ga(1)-O(1 ^g)	91.8(2)	$O(4^{i})$ -Ga(1)- $O(1^{h})$	88.2(2)
$O(4^{i}) - Ga(1) - O(2^{c})$	91.7(2)	$O(4^{i})$ -Ga (1) - $O(2^{i})$	88.3(2)
$O(4^c) - Ga(1) - O(4^i)$	179.99		
$O(3d) - Ga(2) - O(3f)$	179.99	$O(5^{i})$ -Ga(2)- $O(3^{i})$	89.4(2)
$O(5f) - Ga(2) - O(3^d)$	89.4(2)	$O(5') - Ga(2) - O(3')$	90.6(2)
$O(5^{i})$ -Ga(2)- $O(3^{d})$	90.6(2)	$O(5f) - Ga(2) - O(5i)$	179.99
$O(9^{l})$ -Ga (2) - $O(3^{l})$	90.5(2)	$O(9k)-Ga(2)-O(3k)$	89.5(2)
$O(9k)-Ga(2)-O(3d)$	90.5(2)	$O(9^l) - Ga(2) - O(3^d)$	89.5(2)
$O(9^i) - Ga(2) - O(5^i)$	90.9(2)	$O(9k)-Ga(2)-O(5j)$	89.1(2)
$O(9k)-Ga(2)-O(5k)$	90.9(2)	$O(9^{l})$ -Ga (2) - $O(5^{l})$	89.1(2)
$O(9k)-Ga(2)-O(9l)$	179.99		

 a 1 - *x*, 1 - *y*, 1 - *z*. b 1 - *x*, 1 - *y*, 2 - *z*. c $^{1}/_{2}$ - *x*, *y* - $^{1}/_{2}$, 1 - *z*. d *x* $-3/2$, $- y - 1/2$, $z = 8/2 - x$, $y + 1/2$, $1 - z$, $t - x$, $1 - y$, $1 - z$, $s x - 1$, y , $y = 2$, $t - x$, $t - x$, $t - y$, $1 - z$, $s x - 1$, y , *2. h* 1-x, 1 *-y.* 1 *-2. tx-vz,* v2-y.2- 1. *'x,y-* 1,z. *kx,y,z!-x, y.* 1 - *2. nl'12* - *x,* y + '1.1 *-E.*%- x. 'I2* - *y. 2. 0'12* - *x.* - *'In* - *Ys 2.*

gallium atoms, while the other oxygen, *0(6),* is protonated and points into the interlamellar region where it is presumably involved in hydrogen bonding. The GaO_6 octahedral units consist of two water molecules, which occupy the axial positions of the octahedron, plus oxygen atoms from four selenite groups which occupy the equatorial positions. The layers are linked in a way that produces holes higenoughtocontainextrawater molecules.

The hydrogen bonding in the structure is fairly complex. Three of the five hydrogens in the structure were placed usinggeometric considerations and their atomic positions were refined successfully. The gallium-coordinated water molecule, containing $O(3)$, $H(2)$, and $H(3)$, takes part in interlayer hydrogen bonding with two hanging **O(7)** atoms of the diselenite groups. The hydrogen selenite proton, H(1). is connected to *O(6)* and is involved in an interlayer hydrogen bond to **O(4).** The protons of the final water molecule, 0(10), could not he placed with any degree of certainty. However, because the O(10) end of the polar water molecule is positioned inside the positive Ga_{0.5}-(HSeO₃) \cdot H₂O layer, it seems most likely that the δ + hydrogen ends will be oriented toward the negative Ga_{0.5}- $(Se₂O₅)$ layer.

Figure 2. Details of the $Ga_{0.5}(Se_2O_5)$ layer, viewed along [001].

Figure 3. Details of the Ga_{0.5}(HSeO₃) \cdot H₂O layer, viewed along 10011.

Shouldem.

Bond valence calculations carried out on the structure, including terms to account for the hydrogen bonds,²¹ show that **all** the atoms have chemically reasonable bond valence values.

The infrared spectrum of $Ga(HSeO₃)(Se₂O₅)-1.07H₂O$ shows a complicated band structure in the selenite ion stretching region due to the presence of two types of ion, diselenite and hydrogen selenite. The Se-O-Se *6* band is seen at 990 cm^{-1} , the low-energy $(400-600 \text{ cm}^{-1})$ region shows a number of hands that cannot be unambiguously assigned. Other assignments, made by comparison with other spectra of selenite species, are given in Table V.^{5,6}

Acknowledgment. **R.E.M.** would like to thank the **SERC** for provision of a studentship and Blackwell's of Oxford for financial assistance.

Supplementary Material Available: List of thermal parameters for Ga(HSeO₃)(Se₂O₅).1.07H₂O (1 page); list of observed and calculated structure factors for $Ga(HSeO₃)(Se₂O₅)\cdot 1.07H₂O$ (15 pages). Ordering information is given on any current masthead page.